skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Craig, Emilie_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For decades, community ecologists have examined how diversity varies with ecosystem productivity. Despite this long history, tests of hypothesized mechanisms, namely the interplay between environmental filtering, biotic interactions, and dispersal, are lacking, largely due to the intractability of using traditional approaches. Across a productivity gradient in a serpentine grassland (California, USA), for four annual plant species, we coupled local productivity estimates, occupancy surveys, and measures of persistence tested on transplants under natural conditions and when interactions with neighbors were experimentally reduced. We found a positive effect of productivity on diversity (i.e., the proportion of our focal species occupying a location) despite strong competition limiting species persistence in productive environments. Additionally, across species and for the community, we found a strong mismatch between species occupancy versus persistence, largely due to dispersal excess causing sink populations with negative growth rates. Our results suggest that diversity–productivity relationships can be largely driven by dispersal and its interactive effects with local biotic and abiotic conditions. 
    more » « less